
@Kiran Kanwar Rathore

@kiranrathore123

Medium

React JS Interview
Questions

Easy

Hard

React.js is a JavaScript library for building user
interfaces.

 It allows developers to create reusable UI
components and manage the state and props of
those components.

 It differs from other JavaScript libraries in that
it focuses specifically on the view layer of an
application, making it a great choice for building
complex, large-scale user interfaces.

 What is React.js and how does it differ from
other JavaScript libraries?

@Kiran Kanwar Rathore

@kiranrathore123

Reusable components.

Virtual DOM for efficient updates and
rendering.

Good performance.

Strong developer community and support.

Easy integration with other libraries and
frameworks.

Can be used on the client and server side.

What are the advantages of using
React.js?

@Kiran Kanwar Rathore

@kiranrathore123

React uses a virtual DOM (Document Object Model)
to optimize updates and rendering.

The virtual DOM is a lightweight in-memory
representation of the actual DOM.

When the state of a component changes, React
compares the virtual DOM with the actual DOM and
only makes changes to the actual DOM where
necessary, which is much more efficient than re-
rendering the entire page.

How does the virtual DOM in React.js work?

@Kiran Kanwar Rathore

@kiranrathore123

When a component's state changes, React will
re-render that component and its child
components to reflect the new state.

React uses a virtual DOM to optimize updates
by only re-rendering the specific parts of the
actual DOM that have changed.

This helps to improve the performance of the
application.

How does React.js handle updates and
 rendering?

@Kiran Kanwar Rathore

@kiranrathore123

Components in React.js are the building
blocks of a React application.

They are used to create reusable UI
elements.

Components can be either functional or
class-based and can be nested to create
more complex UI elements.

Components accept inputs called props and
manage their own state.

What are the components in React.js
and how are they used?

@Kiran Kanwar Rathore

@kiranrathore123

State in React.js refers to the data or variables
that determine a component's behavior and
render its content.

State can be changed within a component, which
will trigger a re-render.

Props (short for properties) are inputs passed to
a component from its parent.

They are read-only and cannot be changed within
the component.

How does React.js handle state and props?

@Kiran Kanwar Rathore

@kiranrathore123

JSX is a syntax extension for JavaScript that
allows developers to write HTML-like elements
in their JavaScript code.

It is used in React to describe the structure and
content of a component.

JSX is transpiled to plain JavaScript before
being executed, so it is compatible with all web
browsers.

What is JSX and how is it used in
React.js?

@Kiran Kanwar Rathore

@kiranrathore123

The component lifecycle in React.js refers to
the different stages a component goes
through, from its creation to its destruction.

The main lifecycle methods include:

What is the component lifecycle in
React.js?

 1. componentDidMount: executed after the first
render .

2. componentDidUpdate: executed after each
update.

3. componentWillUnmount: executed before the
component is removed from the DOM.

@Kiran Kanwar Rathore

@kiranrathore123

Event handling in React.js is done using the
onEventName syntax, where EventName is
the name of the event you want to handle,
such as onClick or onSubmit.

Event handlers are passed as props to the
component and are typically defined as
arrow functions or bound methods.

How do you use event handling in
React.js?

@Kiran Kanwar Rathore

@kiranrathore123

Props are used to pass data from a parent
component to a child component.

Props provide a way to make components
reusable and configurable.

Props components are read-only
components.

 What is the significance of props in
React.js?

@Kiran Kanwar Rathore

@kiranrathore123

Forms and form validation in React.js are
typically implemented using controlled
components, where the form input values
are stored in the state and updated as the
user interacts with the form.

 Form validation is then performed by
checking the values in the state against a set
of rules.

How do you use forms and form
validation in React.js?

@Kiran Kanwar Rathore

@kiranrathore123

How do you handle routing in a React.js
application?

Routing in a React.js application is typically
handled using a library such as React
Router.

 This library provides components and APIs
for defining routes and navigating between
them.

@Kiran Kanwar Rathore

@kiranrathore123

React.js can be used with a state
management library such as Redux by
integrating the Redux store with the React
components.

 This allows for better management of
shared state between components.

How do you use React.js with a state
management library such as Redux?

@Kiran Kanwar Rathore

@kiranrathore123

Higher Order Components (HOC) in React.js
are components that wrap other
components to add additional functionality.

They are significant because they allow for
code reuse and abstract common
functionality into a single, reusable
component.

What is the significance of Higher Order
Components (HOC) in React.js?

@Kiran Kanwar Rathore

@kiranrathore123

Hooks were introduced in React 16.8 and
allow for using state and other React
features without writing a class
component.

Hooks make it easier to reuse logic
between components and provide more
flexible and concise code.

They are significant because they allow for
more flexible and concise code

How do you use Hooks in React.js?

@Kiran Kanwar Rathore

@kiranrathore123

The Context API in React.js is a feature
that allows for sharing data between
components without passing props down
through multiple levels of components.

This is useful for data that is needed by
many components throughout an
application.

How do you use Context API in React.js?

@Kiran Kanwar Rathore

@kiranrathore123

How can you optimize the performance
of a React.js application?

Performance of React.js applications can
be optimized through techniques like
using the shouldComponentUpdate
lifecycle method and lazy loading.

Memoization can also be used to improve
the performance of React.js applications.

@Kiran Kanwar Rathore

@kiranrathore123

How do you test React.js components?

React.js components can be tested using
various testing libraries, such as Jest
and Enzyme.

 These libraries provide APIs for writing
and running unit tests for React
components.

@Kiran Kanwar Rathore

@kiranrathore123

Server-side rendering in React.js involves
rendering the initial HTML on the server,
rather than in the browser.

This can help improve performance,
especially for slower devices or low-
bandwidth connections.

How does Server-side rendering work
in React.js?

@Kiran Kanwar Rathore

@kiranrathore123

React.js handles different types of errors
through various means, such as the try-
catch statement, the use of error
boundaries, and global error handling.

Error boundaries are React components
that catch JavaScript errors anywhere in
their child component tree, log the errors,
and display a fallback UI.

How does React.js handle different
types of errors?

@Kiran Kanwar Rathore

@kiranrathore123

React.js lifecycle methods are used to
manage the various stages of a
component's lifecycle, such as mounting,
updating, and unmounting.

Lifecycle methods can be used to perform
actions such as fetching data, setting up
subscriptions, or updating the component's
state.

What is the significance of React.js
lifecycle methods?

@Kiran Kanwar Rathore

@kiranrathore123

React's reconciliation algorithm is the process by
which React updates the DOM in response to
changes in the components' state or props.

Virtual DOM: React uses a virtual representation of
the DOM, called the Virtual DOM, to keep track of
changes and update the actual DOM efficiently.

 Here are three key points about how it works:
1.

2. Tree comparison: When a change occurs, React
compares the updated Virtual DOM tree with the
previous Virtual DOM tree to determine the minimum
number of updates required to bring the actual DOM
into sync with the updated Virtual DOM.

Can you explain how React's reconciliation
algorithm works and why it's important?

@Kiran Kanwar Rathore

@kiranrathore123

React's reconciliation algorithm is important
because it allows React to update the user
interface efficiently and with minimal overhead,
making it well-suited for complex and dynamic
applications. Additionally, the use of a Virtual
DOM provides a clear separation between the
user interface and the actual DOM, making it
easier to reason about the behavior of the
application.

3. Update optimization: React uses heuristics and
optimizations to minimize the number of updates
required and make the update process as fast as
possible. The use of the Virtual DOM and the
reconciliation algorithm make React applications
fast, even for large and complex user interfaces.

@Kiran Kanwar Rathore

@kiranrathore123

"Lifting state up" is a concept in React that refers
to the process of sharing state between multiple
components by moving it from lower-level
components to higher-level components.

Centralized management: By lifting state up, you
can centralize the management of state in one or a
few higher-level components, making it easier to
understand and maintain the application.
Reusability: When state is lifted up, lower-level
components that need access to that state can
receive it as props. This makes it easier to reuse
those components in different parts of the
application, as they are not tightly coupled to the
state they depend on.

 Here are three key points about why this is important:
1.

2.

Can you explain the concept of "lifting state
up" in React and why it's important?

@Kiran Kanwar Rathore

@kiranrathore123

Lifting state up is a critical concept in React and
can help improve the structure and
maintainability of your applications. By
centralizing state management and making
components more reusable, you can write
cleaner and more efficient code.

3. Improved performance: Moving state up can also
help improve performance, as React's reconciliation
algorithm can take advantage of the fact that only
a few components are changing instead of having to
update many components individually.

@Kiran Kanwar Rathore

@kiranrathore123

Centralized store: Redux is a state management
library that provides a centralized store for the entire
application. The store contains the state for the
whole application and can be updated using actions
and reducers.
Improved scalability: Redux makes it easier to
manage the state of a large or complex application,
as all the state is contained in a single store and
updates are made using well-defined actions and
reducers.
Better separation of concerns: By using Redux, you
can separate the state management from the
presentation of the components, making it easier to
understand and maintain the application.

Use of Redux With React :

Can you explain the use of Redux with React
and how it differs from using React's built-in
state management?

@Kiran Kanwar Rathore

@kiranrathore123

Local vs global: React's built-in state management
is local to individual components, while Redux
provides a global store for the whole application.

Scalability: React's built-in state management can
become cumbersome in large or complex
applications, while Redux provides a more scalable
solution.

Separation of concerns: React's built-in state
management is closely tied to the presentation of
the components, while Redux provides a more
modular and scalable solution by separating the
state management from the presentation.

Difference between React's built-in state
management and Redux:

@Kiran Kanwar Rathore

@kiranrathore123

State management: Stateful components
maintain their own state, while stateless
components receive all the data they need as
props from higher-level components.

Reusability: Stateless components are typically
more reusable, as they do not maintain any state
and rely solely on the props they receive.

Performance: Stateless components are typically
faster and use less memory, as they do not have
to manage their own state.

Difference between stateless and stateful
components in React:

Can you explain the difference between a
stateless and stateful component in React?

@Kiran Kanwar Rathore

@kiranrathore123

Controlled by React: Controlled components in
React are components that have their value and
behavior controlled by React, rather than by the
user or the DOM.

Better control: By controlling the value and
behavior of a component, you can more easily
manage the behavior of the component and ensure
that it behaves as expected.

Improved reliability: Controlled components can
help improve the reliability of your application, as
you have more control over the behavior of the
component and can ensure that it behaves as
expected.

Concept of controlled components in React:

Can you explain the concept of "controlled
components" in React and why they are
important?

@Kiran Kanwar Rathore

@kiranrathore123

Reactive nature: Reactive updates in React refer to
the way that React updates the user interface in
response to changes in the data. React updates the
UI reactively, meaning that it updates the UI in
response to changes in the data.

Improved performance: Reactive updates can
improve performance by only updating the parts of
the UI that have changed, rather than re-rendering
the entire UI.

Dynamic updates: Reactive updates allow for
dynamic updates to the UI, as the UI is
automatically updated in response to changes in
the data.

Concept of "reactive updates" in React:

Can you explain the concept of "reactive
updates" in React and how it differs from
traditional data binding?

@Kiran Kanwar Rathore

@kiranrathore123

Two-way vs one-way: Traditional data binding
often involves two-way binding, where
changes in the UI can also update the data. In
React, updates are one-way, with changes in
the data causing updates to the UI.

Declarative nature: React uses a declarative
approach to updating the UI, whereas
traditional data binding often uses an
imperative approach.

Efficient updates: React's reactive updates
are more efficient than traditional data
binding, as React only updates the parts of
the UI that have changed.

Differences from traditional data binding:

@Kiran Kanwar Rathore

@kiranrathore123

Lazy loading: Lazy loading in React involves
loading components only when they are
needed, rather than loading all components
upfront. This can improve performance by
reducing the amount of data that needs to be
loaded and processed.

Memoization: Memoization in React involves
caching the results of expensive computations
so that they can be reused in the future, rather
than recomputing the results each time. This
can improve performance by reducing the
amount of redundant computation.

React's performance optimization techniques:

Can you explain how React handles
performance optimization, such as lazy
loading and memoization?

@Kiran Kanwar Rathore

@kiranrathore123

Virtual DOM: React uses a virtual DOM, which
is a lightweight in-memory representation of
the actual DOM, to update the UI efficiently.
This can improve performance by minimizing
the number of actual DOM updates that are
required.

@Kiran Kanwar Rathore

@kiranrathore123

@Kiran Kanwar Rathore
@kiranrathore123

Did you find this post
 helpful?

@Maheshpal Singh Rathore

Like , save, and share
 this

with friends!!!

@mpsrathore2020

Credit - Internet

